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Abstract

In this work, we explore recent advances in computer vi-
sion within the context of analyzing sports broadcast video.
We examine two problems within the context of different
sports: player position estimation in soccer and play clas-
stfication in baseball. For the first part of this work, we
demonstrate 3D reconstruction of soccer scenes from soc-
cer videos by combining human pose estimation with sports
field localization and camera calibration. In the second
part, we evaluate the performance of different video analy-
sis architectures within the context of multi-classification of
broadcast footage of baseball pitching.

1. Introduction

We explore the application of video analysis within the
context of broadcast sports video for end to end 3d recon-
struction of soccer scenes and play classification of baseball
video.

1.1. 3D Soccer Recovery

To perform 3d reconstruction of soccer videos, we lever-
age existing tools for sports field estimation, instance seg-
mentation, pose estimation and human mesh recovery. Our
method uses a frame by frame analysis to generate bound-
ing boxes for each player per frame using MaskRCNN.
Cropped frames of players are used to first estimate 2D pose
keypoints followed by a 3D human mesh recovery that also
estimates the the weak perspective camera parameters. This
is combined with another frame by frame homography esti-
mation between a field template and the broadcast footage.
We leverage this in conjunction with player pose/weak cam-
era estimates to find an estimate of the players position on
the field. We use these to create a synthetic scene which
encodes in low fidelity the player positions in 3d, allowing
us to create synthetic multiviews of the same game.

1.2. Baseball Video Analysis

We investigate the supervised learning task of multi-
classification of Major League Baseball (MLB) clips of
pitching. This particular dataset is challenging due to the
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discriminating portion of the video only being a very small
fraction of the entire video and being very visually simi-
lar. Recent advances in video analysis include SlowFast
networks, which are the focus of this work. We compare
the performance of SlowFast against Inceptionv3 and 13D
baselines and show that SlowFast remains competitive even
with sparse view sampling.

2. Related Work

Player detection: Numerous deep learning models for
object detection have been explored in the field. The pop-
ular architectures include region proposal based detectors,
such as R-CNN [13], Fast R-CNN, [12] Faster R-CNN [38]
and detectors that directly predict boxes for an image in
one step such as YOLO [37] and SSD [29]. By apply-
ing a pre-trained model on a general dataset, one can ex-
tract out the human-class detections. Instead of training
on general dataset, training on ground-truth player posi-
tions would further improve the accuracy for reasons such
as motion blur [20]. While the manual annotation is costly,
people have developed self-supervised techniques to im-
prove the accuracy without the labeled ground truth data.
These approaches involve synthetically generating training
images or using distillation framework for transfer learn-
ing [20, 19, 21, 6, 39].

Pose estimation: The main part of human pose es-
timation is to model the human body. There are sev-
eral common models to achieve pose estimation, such as
skeleton-based model, volume-based model, and contour-
based model [30, 14, 5]. Skeleton-based model [4, 34, 1]
uses a set of joins like shoulders, knees, ankles, elbows, and
limb orientations comprising the skeletal structures of hu-
man body. Volume-based model [42, 2, 31, 23] uses 3D
human body shapes represented by volume based models
with geometric meshes and shapes that were captured by
3D scans. Contour-based model [24, 7] consists of the con-
tour and tough width of body part which are presented with
boundaries and rectangles of people’s silhouette.

Homography Estimation: Homography estimation in
sports field have been extensively studies. One of the most
common techniques is to track on manually annotated inter-
est points [35, 41]. Improvement on this method has been



Figure 1. Field line layout after homography estimation. Homg-
raphy estimation takes in both a video frame and field line tem-
plate as inputs and outputs the homography matrix that rectifies
the video fram input to the template.

shown by using SIFT features augmented with line and el-
lipse information [15, 28, 33]. To eliminate manual ini-
tialization of correspondences, automated method based on
SIFT correspondences has been proposed [17]. Although
the latter improves the matching procedure, it might not ap-
ply to real games due to lack of visual features. Further
improvements using deep network pre-trained on real life
soccer videos have also been made [40].

Action recognition Action recognition can be used to
identify the label of action and activity observed in a video
clip. Video recognition presents new challenges relative
to image classification from the additional temporal plane
as well as the inclusion of audio information in some in-
stances. There are many popular 3D convolution archi-
tectures for action recognition, including ResNeXt, Two-
Stream Inflated 3D ConvNet (I3D), SlowFast, R(2+1)D,
etc [25, 43]. In 3D CNN architecture, filters are designed in
3D, and the channels and temporal information are used as
different dimensions. SlowFast architecture has 2 streams,
called slow and fast paths. Slow stream operates at low
frames and focuses on spatial information, while the fast
stream operates at high frames and focuses on temporal in-
formation. There is information flow from the fast stream to
the slow stream [10, 11]. However, 3D CNNs require huge
computational costs and memory comparing with their 2D
counterparts.

3. Soccer Game Reconstruction

In this section, we describe the components for perform-
ing 3D soccer game recovery.

3.1. Homography Estimation

We estimate the homography between a soccer field tem-
plate and individual frames from soccer video as in Figure
1. Usual automated homography estimation of planar sur-
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Figure 2. Player bounding boxes. Player bounding boxes are esti-
mated using MaskRCNN

Figure 3. 2D pose annotations and recovered 3D mesh estimate.
Player crops are obtained using bounding boxes from MaskR-
CNN. 2D keypoints are generated from OpenPose. Left mesh cor-
responds to the original view perspective whereas the right mesh
is a new synthetic view of the same mesh.

faces relies on keypoint detection and matching. However,
this makes homography estimation heavily reliant on the
visibility of keypoints (i.e. field line intersections/corners),
which can result in failure from occlusion or being out of
frame. We instead use a deep network pretrained on a World
Cup 2014 Dataset for estimating homography of soccer
video frames [18]. This is achieved by using two networks,
one for making an initial estimate of the homography and
another for learning the errors of the initial network, each
trained independently of each other [22]. Adding the resid-
uals from the second network further refines the homogra-
phy estimate.

3.2. Camera Calibration

To estimate camera parameters, we choose the camera
parameters that minimize the projection error of 3D points
on the soccer field onto the 2D video frame. We have cam-
era matrix using the usual intrinsic, extrinsic decomposi-



Figure 4. Input video frame and synthetic render from a new perspective of the same scene. Player meshes were shaded using texture

samples from the original video frame

tion.
P = K|[RJt]

By defining the 3D world space to be such that the y = 0
plane lies on the soccer field surface, we use the homogra-
phy estimation from the previous step to create four 3D-to-
2D keypoint pairs from which we can estimate the camera
extrinsic parameters, R,t, given the camera intrinsics, K.
To get the camera intrinsics, we perform a grid search over
candidate focal lengths and pick the one that generates the
smallest projection error of the 3D point, X, to the control
point in the image, x;.

projection error = Z |x; — PX,]|

3.3. Player Detection and Pose

To find all the players in a given video frame, we first
create bounding boxes for every player instance. We ac-
complish this by using a pretrained MaskRCNN [16] for
human detection as in Figure 2. With the bounding boxes,
we produce crops of individual players which we use inputs
into OpenPose to generate 2D keypoints [3].

2D keypoints can be used with recent work developed
by Kanazawa et al. [26] to produce both 3D pose and shape
of players [32] and weak camera parameters as in Figure 3.
Human mesh recovery extracts the parameters for pose, 6,
and shape, 3 as well as the camera scale, s, global rotation,
R, and translation ¢. The projection of the 3D keypoints,
X (0, B) is given by

& =sII(RX(0,8)) +t

where II is an orthographic projection. Note that the scale
factor, s, is related to the average coordinate in Z by

Since the player crops were produced from the same
video camera footage, weak camera scale combined with
the fixed focal length estimate from camera calibration can
be used to find the distance from the camera to the player,
which we use to generate a 3D coordinate for the player’s
center of mass.

3.4. Scene Reconstruction

The previous step enables us to place the player meshes
in 3D space by shifting the mesh such that the mean of
the mesh points corresponds to the player center of mass.
To generate synthetic multiple views, we can just shift our
camera around the scene. To shade meshes, we texture sam-
ple by projecting the mesh face back onto the original video
frame as in Figure 4.

4. Predicting Baseball Pitches

Here we describe how we performed video analysis of
Baseball Videos

4.1. Dataset

The dataset we use is a labeled dataset of activity seg-
mented videos of 20 baseball games from the 2017 MLB
post-season available on YouTube [36]. Video segments are
clipped around baseball pitches and somewhat shortly af-
ter. However, many clips, being part of broadcast footage
contain no activity segments (e.g., panning over the spec-
tators). As such, unlike other video datasets (i.e. Kinetics,
Charades), it is difficult to correctly determine the activity
from a single sampled video frame. Moreover, differences
between videos even mutually exclusive labels are visually
similar as in Figure 5.

The entire dataset contains 2828 videos for training and
962 for test. Clips are splits such that all clips from any par-
ticular game are only in either the test set or training set
but never both. While the original paper describing this
data set reported a larger number of total video segments,



Figure 5. Representative frames of a video clip labeled ball and
strike respectively. Even mutually exclusive labels are visually
very similar requiring either detection of umpire signals or good
ball detection for effective prediction

at the time of writing this reports, a number of segments
were not recoverable using Youtube-DL which was the sug-
gested method from the original authors for downloading
the dataset, explaining the slightly smaller dataset size.

Labels describe the outcomes of pitches (e.g. ball, strike,
foul, hit, etc.). While certain labels are mutually exclusive,
we frame our prediction task as an eight-way multi-label
classification.

4.2. Implementation Details

Data was preprocessed offline to be downsampled to
256x720. The training set was 80/20 split for training and
validation.

For our network architecture, we chose a SlowFast 16x8
[8] with a temporal ratio of & = 4 and a spatial ratio of
B = 1/8 and a ResNet50 backbone and global average pool
before inference with a fully connected layer [9]. For train-
ing, data was augmented by random scaling such that the
short side of the video could be 340 pixels long, which was
followed by a 225x225 pixel crop. For regularization, the
classification head was trained with a dropout rate of 50%.
Due to hardware limitations, we trained with a batch size
of 1 and on 1 GPU. We began with Kinetics-400 pretrained
weights [27]. We train using SGD for 57 epochs with a

Method | mAP |

Random 16.3
Inceptionv3 + mean pool 35.6
I3D + mean pool 42.4
SlowFast 16x8, R50 + mean pool | 45.5
Inceptionv3 + max pool 479
I3D + max pool 48.3

Table 1. Mean Average Precision for our SlowFast model against
Inceptionv3 and I3D baselines

base learning rate of 0.0375 and momentum 0.9 and 10x
step-wise decay for validation loss plateaus.

At test time, we uniformly sample 10 clips along the time
axis of the video and instead use 3 256x256 spatial crops
(instead of the 224x224 for training) resulting in 30 total
views for inference.

4.3. Results

We evaluate our model using mean average precision
(mAP) for each segment, following the usual practice for
multi-label classification. Table 2 summarizes previously
reported baselines for other one-stream temporally pooled
architectures in comparison to our method [36]. We find
that our method outperforms all other mean pooled base-
lines and is comparable to max pooled baselines. Our Slow-
Fast implementation sparsely samples 64 frames total which
was a fraction of most videos whereas the baselines de-
scribed would use every video frame as part of the input.
This suggests that SlowFast successfully captures temporal
semantics even at much lower cost and with fewer views.

5. Conclusion

In summary, we have shown that recent methods have
made it possible to perform end-to-end 3D scene recovery
and better encode video semantics from broadcast sports
footage. For 3D scene recovery, the methods presented
here could in principle be extended to other sports, only
requiring that the networks for homography estimation be
trained for other sports fields. This necessarily requires a
dataset with labeled homography estimates for other sports
to perform supervised training as was the case for this im-
plementation which at the time of the writing of this paper is
not publicly available. Performance with different temporal
pooling schemes prior to classification should be explored
as older architectures have found success with using tempo-
ral pyramids.
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