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Abstract 
 
Existing curriculum learning algorithms for RL provide an agent with a sequence of             
tasks characterized by different initial state distributions or goals. Here, we present            
another approach to design different tasks -- by varying state transition dynamics,            
ranging from “easy” environments in which the dynamics are simplified or tuned to make              
it easier to reach the goal, to “hard” environments that are closer to the real world. Our                 
experiments on car racing, lunar lander and cart pole tasks show evidence of the              
effectiveness of the method. For the car racing task, we vary the friction of the road to                 
represent changes in the transition dynamics of the environment and the width of the              
road to represent changes in the initial state distributions of the environment. There is              
evidence that curriculum learning leads to improvements when training is sparser for the             
Q-learning algorithm based on a convolutional neural network. For the lunar landing            
task, we designed dynamics curriculums by varying the main and side engine power.             
Within a certain extent, higher engine power will help learning, while extreme high             
engine power will make the lander overly sensitive and impede learning. Our dynamic             
curriculum learning agents where the agent learns with moderate high engine power            
first show evidence of faster learning than baseline. For the cart pole task, we varied the                
magnitude of the gravity and cart mass. Smaller gravity or smaller cart mass can both               
help the system to achieve high reward much faster and more stable. Our experiment              
results show that with a dynamic curriculum, the agents can learn better. 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
Teachers typically employ curriculums in order to effectively relay complex concepts           
and ideas. For example, high school mathematics is usually taught following some            
specified order reflecting an increasing level of complexity, such as starting with            
algebra, then trigonometry, and finally calculus. Employing a curriculum is          
advantageous, because students are able to exploit previously learned concepts to           
better understand new ideas. 
 
Our work applies a similar notion of curriculum learning to the training of deep              
reinforcement learning agents. Overall, we find some evidence for the utility of            
curriculum in facilitating learning across three reinforcement learning tasks. 
 
Related Work 
Curriculum learning has previously been employed in machine learning to facilitate           
model training convergence and improve the final model quality. The idea of training             
machines through curriculum learning was first introduced by Elman 1993 [1]. The idea             
was to start with easier subtasks and gradually increase their difficulty for learning             
simple language grammar. An interesting finding from the study was that without            
curriculum learning, the model could not learn at all. More recently, Weinshall 2018             
applied the concept of curriculum learning for convolutional neural networks by sorting            
the training set based on the performance of a pre-trained network on a larger dataset               
and found improvements on both the convergence speed and final accuracy [2].  
 
Previous works have also explored applying the concept of curriculum learning to train             
reinforcement learning agents. Providing agents with a sequence of tasks characterized           
by different state initializations or goals improved the speed of convergence and quality             
of the final solution [3,4]. ​Another way curriculum learning has been employed in this              
field is through the teacher-student curriculum learning (TSCL) framework [5]. In TSCL,            
the teacher, a policy for selecting tasks, guides the student’s training process by             
selecting proper subtasks. This task selection helps the student learn tasks which            
facilitates the students learning process or at risk of being forgotten by the student. 
 
Background 
We explore two different approaches to curriculum learning. The first approach entails            
providing an agent with different initial state distributions, and the second approach            
entails presenting the agent with a sequence of environments characterized by different            
state transition dynamics, ranging from “easy” dynamics to “hard” dynamics. Our           
curriculum learning methods are evaluated across three reinforcement learning tasks:          
car racing, lunar landing, and cart pole.  



 
Tasks 
 
Car racing 
For the first task, we went with the car racing task from the OpenAI gym               
(​https://gym.openai.com/envs/CarRacing-v0/​). The goal of the task is to train a car           
racing agent to race around a track quickly. The agent must learn to map to individual                
actions like braking, accelerating, and steering left or right from a particular state, which              
consists of 96x96 pixels. The rewards consist of -0.1 every frame and +1000/N for every               
track tile visited where N is the total number of tiles in the track. Each episode consists                 
of one run across the track. The episodes terminate early if the reward is negative 10                
times in a row. 
 
The difficulty in the task is properly controlling the car on the track. It is easy for the car                   
to spin out of control due to its speed and the friction of the road. Thus, the agent must                   
learn to stay on the road to collect rewards and slow down before sharp turns to avoid                 
spinning out of control, but at the same time, try to finish the track quickly. 
 
Lunar lander 
The second task is the continuous version of Lunar Lander from the OpenAI gym              
(​https://gym.openai.com/envs/LunarLanderContinuous-v2/​). The task aims to land the       
craft from the top of the screen to landing pad. Depending on the operation taken and                
position it landed, the craft will gain different rewards. Reward for moving from the top of                
the screen to the landing pad and zero speed is about 100 to 140 points. If the lander                  
moves away from the landing pad, it loses reward. The episode finishes if the lander               
crashes or comes to rest, receiving an additional -100 or +100 points. Each leg with               
ground contact is +10 points. 
 
Cart Pole 
Cart Pole from the OpenAI gym (​https://gym.openai.com/envs/CartPole-v1/​) is our third          
task. In this task, a pole is attached by an un-actuated joint to a cart, which moves along                  
a frictionless track. This system is controlled by applying a force of left or right to the                 
cart. The pendulum starts upright, and the goal is to prevent it from falling over. For                
every time step, if the pole remains upright, a reward of +1 will be provided. The                
episode ends when the pole is more than 15 degrees from vertical, or the cart moves                
more than 2.4 units from the center, or the episode length is more than 200. 
 
Methods 
 

https://gym.openai.com/envs/CarRacing-v0/
https://gym.openai.com/envs/LunarLanderContinuous-v2/
https://gym.openai.com/envs/CartPole-v1/


Car racing 
 
Architecture 
For the car racing RL agent architecture, we went with a Q learning algorithm based on                
a convolutional neural network. The convolutional neural network consists of two           
sequences of convolution layers and max pooling layers followed by a dense layer and              
a final output softmax layer. Relu activation functions are used for the convolution and              
dense layers. The optimization function is the Adam algorithm and the loss is based on               
the mean squared error. 
 
Curriculum learning 
We came up with two ways to apply curriculum learning for this task. They consist of                
changing the dynamics of the environment and changing the initial condition of the             
environment. 
 
The first way is changing the friction of the road, which is a change in the dynamics of                  
the environment. Three friction modes were set for the task. The first is the original set                
up of the road, which is the most difficult version. The second is increasing the friction of                 
the original road by 50% (medium version), and the third is doubling the friction of the                
road (easy version). Increasing the friction of the road makes the task easier, since the               
racing car is easier to control and less likely to spin out of control. 
 
The second way is changing the width of the road. This is related to changing the initial                 
condition of the environment. Three road widths were set for the task. The first is the                
original width of the road; the second is increasing the width of the road by 50%                
(medium version), and the last is doubling the width of the original road (easy).              
Increasing the width of the road makes the task easier, since it’s easier to stay on the                 
road and collect rewards if it is wider. 
 
Lunar lander 
 
Architecture 
We utilized a policy gradient method for the RL agent based on a convolutional neural               
network that is of the same architecture as the previous task. We further added              
reward-to-go and discounting to reduce the variance. 
 
Curriculum learning 
To study the dynamics curriculum learning, we focused on the engine power (MAIN             
ENGINE POWER and SIDE ENGINE POWER) of the lander. To a certain extent, higher              
engine power gives the player a larger control over the agent and makes it easier to                



land well. However, too large engine power would make the lander overly sensitive and              
result in difficulty in learning. Here, we designed a series of curriculum with varying              
engine power for better learning. 
 
Cart Pole 
 
Architecture 
A policy gradient method for the RL agent based on a convolutional neural network that               
is of the same architecture as the previous two tasks is applied in the cart pole. Besides,                 
reward-to-go and discounting are also added to reduce the variance. 
 
Curriculum learning 
For the cart pole environment, we focused on the magnitude of the gravity that the               
system has, as well as the mass of the cart. Smaller gravity gives the cart a better                 
control over the agent and makes it easier to avoid falling over. Similarly, the mass of                
the cart is also critical. If the mass of the cart is smaller, the system is easier to control.                   
In this work, a series of curriculum with varying the gravity magnitude and the mass of                
the cart is applied for better learning. 
 
Experiments 
 
Car racing 
 
We evaluated the total rewards of 6 different RL agents. The details of each agent is                
described below. The agents are evaluated on 5 tasks: the unmodified car racing task,              
easy road width task, medium road width task, easy friction task, and medium friction              
task. The evaluation is averaged across 5 random runs on each task. 
 
Table 1: Description of RL agents for car racing 
 

Agent name Description 

Original_600 RL agent trained on 600 episodes of the        
unmodified car racing task 

Original_300 RL agent trained on 300 episodes of the        
unmodified car racing task 

Width_600 RL agent trained on 200 episodes of the        
easy road width version, 200 episodes on       
the medium road width version, and 200       



 
 
 
Lunar lander 
 
We evaluated the total rewards of 7 different RL agents. The details of each agent is                
described below. The evaluation is averaged across 3 random runs. 
 
Table 2: Description of RL agents for lunar lander 
 

episodes on the unmodified car racing      
task 

Width_300 RL agent trained on 100 episodes of the        
easy road width task, 100 episodes on       
the medium road width task, and 100       
episodes on the unmodified car racing      
task 

Friction_600 RL agent trained on 200 episodes of the        
easy road friction version, 200 episodes      
on the medium road friction version, and       
200 episodes on the unmodified car      
racing task 

Friction_300 RL agent trained on 100 episodes of the        
easy road friction version, 100 episodes      
on the medium road friction version, and       
100 episodes on the unmodified car      
racing task 

Agent name Description 

Original_100 RL agent trained on 100 episodes of the        
unmodified lunar lander task, that is 13 for        
main, 0.6 for side 

High_100 RL agent trained on 100 episodes of the        
lunar lander task with high engine power: 
50 for main, 10 for side 

2nd_High_100 RL agent trained on 100 episodes of the        
lunar lander task with 2nd highest engine       
power: 
25 for main, 5 for side 



 
Cart Pole 
 
We evaluated the total rewards of 8 different RL agents. The details of each agent is                
described below. The agents are evaluated on 7 tasks: the unmodified cart pole task,              
smaller gravity task, slightly smaller gravity task, larger gravity task, smaller cart mass             
task, and larger cart mass task. The evaluation is averaged across 3 random runs on               
each task. 
 
Table 3: Description of RL agents for cart pole 
 

3rd_High_100 RL agent trained on 100 episodes of the        
lunar lander task with 3rd highest engine       
power: 
13 for main, 2.5 for side 

Extreme_100 RL agent trained on 100 episodes of the        
lunar lander task with extremely high      
engine power: 
500 for main, 50 for side 

C1_100 RL agent trained on 20 episodes of the        
High_100 version, 20 episodes on the      
2nd_High_100 version, 20 episodes on     
the 3rd_High_100 version and 40     
episodes on the original task 

C2_100 RL agent trained on 30 episodes of the        
High_100 version and 70 episodes on the       
original task 

Agent name Description 

Original_100 RL agent trained on 100 episodes of the        
unmodified cart pole task 

GravityMoon_100 RL agent trained on 100 episodes of the        
cart pole task with smaller gravity applied       
(the gravity on the Moon = 1.6) 

GravityMars_100 RL agent trained on 100 episodes of the        
cart pole task with smaller gravity applied       
(the gravity on the Mars = 3.7) 

GravityJupiter_100 RL agent trained on 100 episodes of the        



 
 
Results 
 
Car racing 
The results for each RL agent across the variations of the car racing tasks are detailed                
in the table below.  
 
Table 4: Total rewards for each RL agent across car racing tasks, averaged across 5               
runs 

 
Amongst RL agents trained on 600 episodes total, the Original_600 agent performs the             
best on the original task and across many of the variations of the task as well. From                 

cart pole task with larger gravity applied       
(the gravity on the Jupiter = 25) 

MassCart0.9_100 RL agent trained on 100 episodes of the        
cart pole task with smaller cart mass (0.9) 

MassCart1.5_100 RL agent trained on 100 episodes of the        
cart pole task with larger cart mass (1.5) 

C1_100 RL agent trained on 50 episodes of the        
GravityMoon_100 version, and 50    
episodes on the original task 

C2_100 RL agent trained on 30 episodes of the        
MassCart0.9 version and 70 episodes on      
the original task 

Experiment Original 
task 

Friction_easy Friction_medium Width_easy Width_medium 

Original_600 866 1008 1040 1010 908 

Width_600 640 980 1124 577 389 

Friction_600 784 1022 1036 44 89 

Original_300 215 344 247 248 364 

Width_300 269 388 298 147 270 

Friction_300 398 446 534 552 524 



these agent results, it does not seem like applying curriculum learning in this fashion led               
to better agents. 
 
However, amongst RL agents trained on 300 episodes total, the Friction_300 agent            
performs the best across all the variations of the task, including the unmodified task.              
The difference in rewards compared to the Original_300 agent is substantial, more than             
100 points in each task. Interestingly Width_300 performs better than Original_300 on            
the original task and the modified road friction tasks but worse on the modified width               
tasks by about 100 points.  
 
There is some evidence of the utility of curriculum learning applied in this way, because               
friction_300 performs the best out of the agents trained on 300 episodes. Most of the               
performance gains come from agents trained only on 300 episodes total compared to             
those trained on 600 total. From the experiments done, one potential takeaway is that              
increasing the training procedure negates the benefits of curriculum learning to an            
extent. However, more experiments with RL agents trained on varying numbers of            
episodes need to be done to better understand how much benefit curriculum learning             
can give in different circumstances. 
 
 
Lunar lander 
The training curves for RL agents are shown below.  
 
Figure 1: Learning curve for Original_100, High_100, 2nd_High_100, 3rd_High_100 and          
Extreme_100.  
 
 
 



 
 

The learning curve shows that within a certain range, higher main and side engine              
power will help learning, while the extreme power will impede learning. This validates             
our choice of different engine power as tuning parameters for our curriculum design. 
 
Figure 2: Learning curve for Original_100, C1_100, C2_100. The blue and orange            
dashed lines mark the change of curriculums for C1_100 and C2_100, respectively. 

 
 
For the agents with curriculum C1 and C2, there’s some evidence that with curriculum,              
the agents learn faster. Further tuning of the curriculum parameters can be studied to              
further improve the agent’s behaviour. 
 
Cart Pole 



The training curves for RL agents are shown below.  
 
Figure 3: Learning curve for Original_100, GravityMoon_100, GravityMars_100, and         
GravityJupiter_100. 

 
 
The learning curve shows that smaller gravity can improve the learning curve to achieve              
the high value much faster, and also more stable, while the larger gravity will impede               
the system to learn. This validates our choice of different gravity as tuning parameters              
for our curriculum design. 
 
Figure 4: Learning curve for Original_100, MassCart0.9_100, and MassCart1.5_100. 

 
The learning curve shows that smaller mass can improve the learning curve to achieve              
high rewards much faster, and are also more stable. With a larger cart mass, the               



system cannot maintain stability with more episodes. This validates our choice of            
different cart mass as tuning parameters for our curriculum design. 
 
Figure 5: Learning curve for Original_100, C1_100, C2_100. The blue and orange            
dashed lines mark the change of curriculums for C1_100 and C2_100, respectively. 

 
 
For the agents with curriculum C1 and C2, we can clearly see with a dynamic               
curriculum, the agents can learn faster. Future work can be done to better tune the               
curriculum parameters to further improve the agent’s performance. 
 
Future Work 
One natural follow-up to our work is to further tune the curriculum learning parameters              
such as how many episodes we learn for each curriculum and the difficulty level of the                
curriculums. Furthermore, it will be interesting to integrate with other curriculum           
methods such as varying initial conditions and rewards to design more comprehensive            
curriculums. Automatic curriculum design for these comprehensive curriculums is also a           
promising direction to go. 
 
Conclusion 
In this work, we presented a novel curriculum design for dynamics curriculum learning.             
We found that it performed modestly better than the baseline on environments such as              
Car racing, Lunar lander and Cart pole. Varying state dynamic transition can be an              
effective means for curriculum design.  
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