
 
Abstract 

 
Car accidents cause many deaths each year. Accurate        

predictions help emergency responders to evaluate      
potential impacts and prepare accordingly. Our project is        
to predict the severity of car accidents in California using          
machine learning methods. This paper first explains the        
data processing method and then analyzes different       
machine learning models we use for prediction. Different        
models are used to make predictions. Various       
hyperparameters and machine learning tricks are further       
analyzed. The performance of a model is basically        
evaluated by the accuracy of the prediction. Among the         
models we use, the decision tree gives the highest         
accuracy at 0.927. 

 

1. Introduction 
Approximately 1.35 million people die each year as a         

result of road traffic crashes [1]. Road traffic injuries are          
the leading cause of death for children and young adults          
aged 5-29 years. It is crucial to predict the severity of           
accidents, which provides possibilities of effective      
accident management to decrease injuries and increase       
traffic safety. More specifically, accurate prediction      
provides important information for emergency responders      
to evaluate potential impacts on public safety and prepare         
accordingly. 

2. Dataset 
The dataset we start with contains about 3 million         

traffic accidents that took place in 49 states of the United           
States from February 2016 to December 2019 [2]. The         
attributes are summarized in Table 1 below. 

 

Total Attributes 49 

Traffic Attributes (12) id, source, TMC, severity, 
start_time, end_time, 

start_lat, start_lng, end_lat, 
end_lng, distance, and 

description 

Address Attributes (10) number, street, side 
(left/right), city, 

county, state, zip-code, 

country, timezone, 
airport_code 

Weather Attributes (10) weather_timestamp, 
temperature, wind_chill, 

humidity, pressure, visibility, 
wind_direction, wind_speed, 

precipitation, 
weather_condition 

Point of Interest 
Attributes (13) 

amenity, bump, crossing, 
give-way, junction, no-exit, 
railway, roundabout, station, 
stop, traffic calming, traffic 

signal, turning loop 

Period-of-Day (4) sunrise/sunset, civil twilight, 
nautical twilight, 

astronomical twilight 

Table 1. The features in the original dataset 
 

We count the accident occurrences in each state, as         
shown in Figure 1, and realize California state has         
approximately ¼ of the accidents. Therefore, the accident        
severity in CA will be analyzed in this report. 

 
Figure 1. The accident counts in each state. 

 
Based on the accident start time and end time text, we           

extract the numerical year, month, day, and hour        
information. Moreover, we create a feature that determines        
whether the accidents occur during the weekdays or        
weekends. The accident time duration is calculated for all         
accidents by subtracting the start time from the end time.          
We neglect the data that has negative time duration,         
because obviously there are mistakes while recording the        
data. For time duration that is out of 3 standard deviations           
from the median duration, we backfill them with the         
median. 

Wind speed is also an important factor, but in the          
original dataset, some data is empty for this attribute. We          
find the wind directions for the empty wind speed data are           

 



 

either “North” or “Calm”. Therefore, for the empty wind         
speed data, if its wind direction is “Calm”, we set it to 0,             
and if its wind direction is “North”, we fill it with the            
median of the wind speed. 

The wind direction feature has more than 20 different         
descriptions. We first convert them into lower case letters         
and then create 4 features (“North”, “South”, “East”,        
“West”) to summarize the wind directions. For example, if         
the wind direction is Northeast or NE, we will set its North            
and East features to 1, and keep the other two features 0. 

Similarly, for the weather conditions, there are more        
than 120 different types of descriptions. Based on the         
lowercase keywords, we summarized the weather      
conditions into 6 features, as shown in Table 2. 
 

New Features Keywords 

Rainy rain, drizzle, shower, hail, 
thunder, storm 

Snowy snow, freez, hail, ice, wintry, 
sleet 

Windy wind, storm, squall, tornado 

Cloudy overcast, cloud 

Fog haze, fog, smoke, ash, mist, 
sand, dust 

Clear clear, fair, n/a 

Table 2. The keywords for new weather condition features 
 

We also convert other text features into one-hot        
encoded features, such as Source (Bing/MapQuest),      
Sunrise_Sunset (day/night), Side (left/right), etc. 

After data preprocessing, we have 42 features excluding        
severity for further analysis. 

3. Models 
In this section, we analyze three main machine learning         

models. The advantages and weaknesses of models,       
hyperparameter tuning and metric selection will be       
discussed in detail. We also analyze the influence of         
ensemble learning. 

3.1. Decision Tree 

A decision tree is a nonlinear machine learning method          
for classification and regression. In a decision tree, we         
usually have two node types: internal nodes represent a         
“test” on feature values, and their branches represent the         
outcome of the test; leaf nodes represent class labels.         

Classification rules can be obtained by traversing from        
root to leaf. 
 
3.1.1 Pre-pruning 

A basic decision tree algorithm keeps subdividing tree        
nodes until every leaf is pure. Sometimes, due to the noise           
existing in data, it may cause overfitting. Besides, a         
complete tree can have super considerable depth and tree         
size. To limit tree size and depth for speed and avoiding           
overfitting, we need pre-pruning, that is to say, stopping         
the tree-building process early.  

There are several most common stopping conditions,       
including setting max depth, minimum sample split, and        
minimum sample leaf. Max depth means when a decision         
tree arrives at a certain depth, it will stop dividing. The           
minimum sample split is the minimum sample number in         
an internal node. If the number of samples in a node is            
smaller than the minimum sample split, it will stop         
splitting. The minimum sample leaf means the minimum        
number of samples required to be at a leaf node. 

Figure 2. Max depth vs cross validation accuracy of decision tree 
models. 

 

 
Figure 3. Minimum sample split/minimum sample leaf vs 

cross validation accuracy of decision tree models. 
 

In our work, we tune these pre-pruning parameters and          
observe clear rules: with increasing these parameters, the        
cross-validation accuracy increases at first and then       
decreases, as shown in Figure 2 and 3. For these three           
parameters, smaller values mean the tree-building stops       
earlier, vice versa. If we stop too early, the classifier will           
get a poor accuracy due to the underfitting. However, if          
we stop too late, the classifier will fit noise and give a bad             
performance. The best minimum samples split is about        
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twice as much as the minimum samples leaf. If we set the            
minimum sample leaf as a specific value, then the         
minimum samples split is around twice that value. 

 
3.1.2 Balanced weights 
 

In a basic decision tree, we treat each data sample           
equally. The basic decision tree works well when the data          
is balanced. Balanced data means we have similar        
numbers of samples for each class. However, when the         
data is imbalanced, we need to do some extra processing          
on the data. We use a set of weights that is inversely            
proportional to class frequencies in the data. The results         
are shown in Figure 4. 

Figure 4. Accuracy of decision tree models vs. maximum depth. 
 

Different from our expectation, the model of balanced         
weight does not perform better than the normal one. It is           
because our validation has the same distribution as the         
imbalanced training data.  
 
3.1.3 Minimal cost-complexity pruning 
 

Minimal cost-complexity pruning is an algorithm used        
to prune a decision tree to avoid overfitting. This         
algorithm is more reliable than stopping early. We first         
build a complete decision tree whose leaves are all pure.          
Then, we select an as the complexity parameter. The    α       
parameter can be calculated by , where α      |T | − 1

R(t) − R(T )t   (T )R
is defined as the misclassification rate of the terminal         
nodes, is the number of terminal nodes in T and is T ||          T t   
defined to be a tree whose root is node t [3]. The larger             α  
is, the more impurity decreasing a node can cause.  

To implement the pruning, we select a cost complexity          
threshold. When a branch’s minimal is smaller than the     α      
threshold parameter, we prune that branch. During       
pruning, we first find an path. This path returns the     α    α     
effective in increasing order. As increases, more α      α    
branches are pruned. Here we plot the accuracy and depth          
vs. alpha as shown in Fig. 5 and 6.  

 
Figure 5. Accuracy of decision tree models vs. . α  

 
Figure 6. Accuracy of decision tree vs. . α  

 
When the depth is around 30, the best accuracy is 0.927.            

This accuracy is better than the previous parameter        
combination. Pruning often works better than stopping       
early. The reason is that sometimes a split that does not           
seem to make much progress is followed by a split that           
makes much progress. 

3.2. K-Nearest Neighbor 

 
K-Nearest Neighbor (k-NN) is an instance-based      

learning algorithm that is effective in both classification        
and regression tasks [4]. 

The main idea is that similar things exist in close          
proximity. In k-NN classifier, we classify test data based         
on the votes from k nearest neighbors. 

  
3.2.1 Distance Metrics 
 

As k-NN makes predictions based on votes from        
neighbors, it is important to choose a suitable metric to          
calculate distances between data points.  

We selected three most commonly used distance metrics        
for evaluation: Euclidean distance, Manhattan distance and       
Chebyshev distance. Geometry features of metrics are       
shown in Figure 7. 
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(a)Euclidean    (b)Manhattan    (c)Chebyshev 

Figure 7. Geometry features of metrics. 
 

Euclidean distance is the most commonly used metric in         
general k-NN models. It is given by: 

x, ) |x ||  d2 : ( y → | − y 2 = √ (x )∑
n

i=1
i − yi

2   

  
Manhattan distance is usually used in calculating       

graph-like paths. It is calculated using an absolute sum of          
difference between its Cartesian coordinates as below: 

x, ) |x || x |d1 : ( y → | − y 1 = ∑
n

i=1
| i − yi  

 
Chebyshev distance is also known as chessboard       

distance as it is the distance between two spaces on a chess            
board that gives the minimum number of moves a king          
requires to move between them.  

x, ) |x || ax  |x |  d∞ : ( y → | − y ∞ = m i i − yi  
 

Comparing different metrics in k-NN models,      
Manhattan distance outperforms Chebyshev distance and      
the most commonly used Euclidean distance, as shown in         
Figure 8. This is because Manhattan distance handles data         
with binary attributes well and our data contains a lot of           
binary numbers as we use one hot encoding.  

 
Figure 8. Validation accuracy of k-NN models with different 

metics. 
 

3.2.2 Weighted k-NN 
 
In regular k-NN, we simply use the majority vote from          

the nearest neighbors to predict the test data. Since the          
weights of different neighbors are uniform, this is also         
called uniform weighted k-NN. 

As we increase the number of neighbors ​k​, the         
generalization increases while the model becomes less       
stable. When we use a large ​k ​(i.e. greater than 8), the            
accuracy of the uniform k-NN stops increasing. As shown         
in Figure 9. This is because the local structure can no           
longer be represented well with large ​k​ values.  

 
Figure 9. Accuracy of uniform k-NN and distance-weighted 

k-NN. 
 
Distance-weighted k-NN has better performance than      

uniform k-NN where each neighbor is weighted by the         
distance. Closer neighbors represent local features better       
so they have larger weights. Here we use the inverse of the            
distance as the weights. The accuracy keeps going up as ​k           
increases, even in a large value (i.e. ​k​ = 18) 

 
3.2.3 Bagging and pasting 
 

We test ensemble learning on k-NN models with        
bagging methods. 

Bagging methods form a class of k-NN models which         
build several instances of k-NN estimators on random        
subsets of the original training set. The bagging methods         
we use here are bagging and pasting. They differ from          
each other by the way they draw random subsets of          
samples. Bagging draws subset with replacement while       
pasting draws without replacement.  

The results of single k-NN and k-NN with bagging         
methods are shown in Table 3. 

 

 Single k-NN Bagging Pasting 

k=1 0.662 0.673 0.669 

k=5 0.673 0.678 0.678 

k=10 0.681 0.680 0.680 

 
Table 3.Validation accuracy of single k-NN and k-NN with 

bagging methods. 
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For a k-NN model with small ​k (i.e. k = 1), bagging and             

pasting increase the model performance by reducing       
variance between estimators. Bagging performs better than       
pasting.  

For a k-NN model with larger ​k​, bagging and pasting          
don’t increase accuracy compared to a single k-NN model.         
Difference between bagging and pasting is trivial. This is         
because bagging and pasting benefit unstable learners that        
are usually sensitive to modified datasets. However, our        
k-NN models with proper ​k values are stable and effective          
therefore don’t benefit from bagging methods. 

We achieve the highest accuracy of 0.716 on the k-NN          
model. In the fine-tuned model, we use Manhattan        
distance and samples are weighted by distance. 

3.3. Support Vector Machine 

Support Vectors Classifier tries to find the best        
hyperplane to separate the different classes by maximizing        
the distance between sample points and the hyperplane.        
We implement different kernels and tune the       
hyperparameters to find the best model for severity        
prediction. 

Since SVM models are not scale-invariant, normalizing       
the input data before applying the model can significantly         
speed up the training process. 

 
3.3.1 Kernel Chosen and Number of Samples 
 

The kernel functions that might perform well on our         
dataset are: linear, polynomial (poly), and radial basis        
function (rbf). 

Linear kernel function can be expressed as: 
,< x x′ >  

With default parameters, its training accuracy vs. the         
number of training points is shown in Figure 10. The best           
accuracy is around 0.69. 

 
Figure 10. Accuracy of linear SVM vs. the number of training 

samples. 
 

Polynomial kernel function can be expressed as:  
(γ , + )< x x′ > r d  

Its training accuracy vs. the number of training points         
using default parameters is shown in Figure 11. The best          
accuracy is around 0.72. 

 
Figure 11. Accuracy of poly SVM vs. the number of training 

samples. 
 

Radial basis function kernel can be expressed as:  
xp(− ||x || )e γ − x′ 2  

Its training accuracy vs. the number of training points is          
shown in Figure 12. The best accuracy is also around 0.72. 

 
Figure 12. Accuracy of rbf SVM vs. the number of training 

samples. 
 
Obviously, poly and rbf kernels perform better than the         

linear model. This is because they use non-linear        
hyperplanes to classify the sample points. SVM model        
training is super slow with a large number of data points.           
From Figure 10,11 and 12, training 8000 samples provides         
the best tradeoff between accuracy and speed. Therefore,        
all the following training processes use 8000 training        
samples. 
 
3.3.2 Hyperparameter Tuning 
 

C is a hyperparameter that controls the strength of         
regularization. It controls the tradeoff between smooth       
decision boundary and training accuracy. Figure 13 and 14         
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show the validation set accuracy vs. different C values for          
poly model and rbf model, respectively. For both models,         
the best accuracy occurs when C is around 15.  

 
Figure 13. Accuracy of poly SVM vs. C. 

 
Figure 14. Accuracy of rbf SVM vs. C. 

 
Hyperparameter γ is used for non-linear hyperplane       

tuning. The higher the γ value is, the harder the model tries            
to exactly fit the training dataset. Figure 15 and 16 show           
the validation set accuracy vs. different γ values for poly          
model and rbf model, respectively. For the poly model, the          
best accuracy occurs when γ is around 0.02, and the best γ            
for the rbf model is around 0.04. 

 
Figure 15. Accuracy of poly SVM vs. γ. 

 
Figure 16. Accuracy of rbf SVM vs. γ. 

 
For the poly model, we also tuned the parameter         

“degree”, which refers to the degree of the polynomial         
kernel function. The degree is swept from 0 to 6 and the            
result is shown in Figure 17. The best degree for our           
application is 2. 

 
Figure 17. Accuracy of poly SVM vs. degree. 

 
Therefore, with the well-tuned SVM model, we       

achieved 0.741 test accuracy, when using the poly model         
with degree = 2, C = 15, and γ = 0.02. 

4. Comparison and Discussion 
 

 Decision 
Tree  

K-NN SVM 

Accuracy 0.927 0.716 0.741 

Table 4. Accuracy of different models 
 

In our work, we obtain the best accuracy by using           
decision trees with minimal cost-complexity pruning as       
shown in Table 4. In this section, we analyze and compare           
different classifiers in our project and explain why        
decision trees can obtain the best performance on our data. 
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Predicting accident severity is a nonlinear multiclass        
problem. Decision trees are nonlinear algorithms that are        
designed in a structure intrinsically suited for multiclass        
situations, while basic support vector machines are mainly        
designed for linear binary classification problems. The       
k-NN model is suitable for nonlinear multiclass problems        
with low feature dimensions. In our data, feature        
dimensionality is high. Besides, the k-NN algorithm is a         
clustering algorithm based on neighborhoods. So, we have        
to use a distance metric and all the features must be           
numeric. In our data, we have several hot features. These          
features are treated as numeric values and can negatively         
influence the final performance. 

5. Conclusions and Future Work 
In this paper, we used 500,000 data points to predict the           

severity of car accidents in California. We drop        
meaningless features from 49 features in raw data. We         
simplify text data into key words and use one-hot         
encoding to convert them into numerical data. Finally, we         
obtain data with 42 features. 

Decision tree, k-NN and SVM models are used for         
prediction. With decision trees, we tune minimum leaf size         
and split threshold to decide when the tree stops dividing.          
To balance the influence of different classes, we use         
balanced weights. We also prune unnecessary branches of        
a complete tree to avoid overfitting. For k-NN, we         
compare models with different distance metrics.      
Distance-weighted k-NN has better performance than      
uniform k-NN. In a distance-weighted knn, the closer the         
neighbour, the more important it is. Thus, we can preserve          
generalization when we increase the number of neighbors.        
For SVM, We tried linear, poly, and rbf kernels. Poly and           
rbf have higher accuracy than the linear model. We tuned          
the penalty term of the error and for poly and rbf       γ      
kernels to get better trade-off between underfitting and        
overfitting.  

Among all the models, the decision tree with minimal         
cost-complexity pruning achieves the highest accuracy at       
0.927. 
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