

Abstract

Car accidents cause many deaths each year. Accurate

predictions help emergency responders to evaluate
potential impacts and prepare accordingly. Our project is
to predict the severity of car accidents in California using
machine learning methods. This paper first explains the
data processing method and then analyzes different
machine learning models we use for prediction. Different
models are used to make predictions. Various
hyperparameters and machine learning tricks are further
analyzed. The performance of a model is basically
evaluated by the accuracy of the prediction. Among the
models we use, the decision tree gives the highest
accuracy at 0.927.

1. Introduction
Approximately 1.35 million people die each year as a

result of road traffic crashes [1]. Road traffic injuries are
the leading cause of death for children and young adults
aged 5-29 years. It is crucial to predict the severity of
accidents, which provides possibilities of effective
accident management to decrease injuries and increase
traffic safety. More specifically, accurate prediction
provides important information for emergency responders
to evaluate potential impacts on public safety and prepare
accordingly.

2. Dataset
The dataset we start with contains about 3 million

traffic accidents that took place in 49 states of the United
States from February 2016 to December 2019 [2]. The
attributes are summarized in Table 1 below.

Total Attributes 49

Traffic Attributes (12) id, source, TMC, severity,
start_time, end_time,

start_lat, start_lng, end_lat,
end_lng, distance, and

description

Address Attributes (10) number, street, side
(left/right), city,

county, state, zip-code,

country, timezone,
airport_code

Weather Attributes (10) weather_timestamp,
temperature, wind_chill,

humidity, pressure, visibility,
wind_direction, wind_speed,

precipitation,
weather_condition

Point of Interest
Attributes (13)

amenity, bump, crossing,
give-way, junction, no-exit,
railway, roundabout, station,
stop, traffic calming, traffic

signal, turning loop

Period-of-Day (4) sunrise/sunset, civil twilight,
nautical twilight,

astronomical twilight

Table 1. The features in the original dataset

We count the accident occurrences in each state, as
shown in Figure 1, and realize California state has
approximately ¼ of the accidents. Therefore, the accident
severity in CA will be analyzed in this report.

Figure 1. The accident counts in each state.

Based on the accident start time and end time text, we

extract the numerical year, month, day, and hour
information. Moreover, we create a feature that determines
whether the accidents occur during the weekdays or
weekends. The accident time duration is calculated for all
accidents by subtracting the start time from the end time.
We neglect the data that has negative time duration,
because obviously there are mistakes while recording the
data. For time duration that is out of 3 standard deviations
from the median duration, we backfill them with the
median.

Wind speed is also an important factor, but in the
original dataset, some data is empty for this attribute. We
find the wind directions for the empty wind speed data are

either “North” or “Calm”. Therefore, for the empty wind
speed data, if its wind direction is “Calm”, we set it to 0,
and if its wind direction is “North”, we fill it with the
median of the wind speed.

The wind direction feature has more than 20 different
descriptions. We first convert them into lower case letters
and then create 4 features (“North”, “South”, “East”,
“West”) to summarize the wind directions. For example, if
the wind direction is Northeast or NE, we will set its North
and East features to 1, and keep the other two features 0.

Similarly, for the weather conditions, there are more
than 120 different types of descriptions. Based on the
lowercase keywords, we summarized the weather
conditions into 6 features, as shown in Table 2.

New Features Keywords

Rainy rain, drizzle, shower, hail,
thunder, storm

Snowy snow, freez, hail, ice, wintry,
sleet

Windy wind, storm, squall, tornado

Cloudy overcast, cloud

Fog haze, fog, smoke, ash, mist,
sand, dust

Clear clear, fair, n/a

Table 2. The keywords for new weather condition features

We also convert other text features into one-hot
encoded features, such as Source (Bing/MapQuest),
Sunrise_Sunset (day/night), Side (left/right), etc.

After data preprocessing, we have 42 features excluding
severity for further analysis.

3. Models
In this section, we analyze three main machine learning

models. The advantages and weaknesses of models,
hyperparameter tuning and metric selection will be
discussed in detail. We also analyze the influence of
ensemble learning.

3.1. Decision Tree

A decision tree is a nonlinear machine learning method
for classification and regression. In a decision tree, we
usually have two node types: internal nodes represent a
“test” on feature values, and their branches represent the
outcome of the test; leaf nodes represent class labels.

Classification rules can be obtained by traversing from
root to leaf.

3.1.1 Pre-pruning

A basic decision tree algorithm keeps subdividing tree
nodes until every leaf is pure. Sometimes, due to the noise
existing in data, it may cause overfitting. Besides, a
complete tree can have super considerable depth and tree
size. To limit tree size and depth for speed and avoiding
overfitting, we need pre-pruning, that is to say, stopping
the tree-building process early.

There are several most common stopping conditions,
including setting max depth, minimum sample split, and
minimum sample leaf. Max depth means when a decision
tree arrives at a certain depth, it will stop dividing. The
minimum sample split is the minimum sample number in
an internal node. If the number of samples in a node is
smaller than the minimum sample split, it will stop
splitting. The minimum sample leaf means the minimum
number of samples required to be at a leaf node.

Figure 2. Max depth vs cross validation accuracy of decision tree
models.

Figure 3. Minimum sample split/minimum sample leaf vs

cross validation accuracy of decision tree models.

In our work, we tune these pre-pruning parameters and
observe clear rules: with increasing these parameters, the
cross-validation accuracy increases at first and then
decreases, as shown in Figure 2 and 3. For these three
parameters, smaller values mean the tree-building stops
earlier, vice versa. If we stop too early, the classifier will
get a poor accuracy due to the underfitting. However, if
we stop too late, the classifier will fit noise and give a bad
performance. The best minimum samples split is about

2

twice as much as the minimum samples leaf. If we set the
minimum sample leaf as a specific value, then the
minimum samples split is around twice that value.

3.1.2 Balanced weights

In a basic decision tree, we treat each data sample
equally. The basic decision tree works well when the data
is balanced. Balanced data means we have similar
numbers of samples for each class. However, when the
data is imbalanced, we need to do some extra processing
on the data. We use a set of weights that is inversely
proportional to class frequencies in the data. The results
are shown in Figure 4.

Figure 4. Accuracy of decision tree models vs. maximum depth.

Different from our expectation, the model of balanced
weight does not perform better than the normal one. It is
because our validation has the same distribution as the
imbalanced training data.

3.1.3 Minimal cost-complexity pruning

Minimal cost-complexity pruning is an algorithm used
to prune a decision tree to avoid overfitting. This
algorithm is more reliable than stopping early. We first
build a complete decision tree whose leaves are all pure.
Then, we select an as the complexity parameter. The α
parameter can be calculated by , where α |T | − 1

R(t) − R(T)t (T)R
is defined as the misclassification rate of the terminal
nodes, is the number of terminal nodes in T and is T || T t
defined to be a tree whose root is node t [3]. The larger α
is, the more impurity decreasing a node can cause.

To implement the pruning, we select a cost complexity
threshold. When a branch’s minimal is smaller than the α
threshold parameter, we prune that branch. During
pruning, we first find an path. This path returns the α α
effective in increasing order. As increases, more α α
branches are pruned. Here we plot the accuracy and depth
vs. alpha as shown in Fig. 5 and 6.

Figure 5. Accuracy of decision tree models vs. . α

Figure 6. Accuracy of decision tree vs. . α

When the depth is around 30, the best accuracy is 0.927.

This accuracy is better than the previous parameter
combination. Pruning often works better than stopping
early. The reason is that sometimes a split that does not
seem to make much progress is followed by a split that
makes much progress.

3.2. K-Nearest Neighbor

K-Nearest Neighbor (k-NN) is an instance-based

learning algorithm that is effective in both classification
and regression tasks [4].

The main idea is that similar things exist in close
proximity. In k-NN classifier, we classify test data based
on the votes from k nearest neighbors.

3.2.1 Distance Metrics

As k-NN makes predictions based on votes from
neighbors, it is important to choose a suitable metric to
calculate distances between data points.

We selected three most commonly used distance metrics
for evaluation: Euclidean distance, Manhattan distance and
Chebyshev distance. Geometry features of metrics are
shown in Figure 7.

3

(a)Euclidean (b)Manhattan (c)Chebyshev

Figure 7. Geometry features of metrics.

Euclidean distance is the most commonly used metric in
general k-NN models. It is given by:

x,) |x || d2 : (y → | − y 2 = √ (x)∑
n

i=1
i − yi

2

Manhattan distance is usually used in calculating

graph-like paths. It is calculated using an absolute sum of
difference between its Cartesian coordinates as below:

x,) |x || x |d1 : (y → | − y 1 = ∑
n

i=1
| i − yi

Chebyshev distance is also known as chessboard

distance as it is the distance between two spaces on a chess
board that gives the minimum number of moves a king
requires to move between them.

x,) |x || ax |x | d∞ : (y → | − y ∞ = m i i − yi

Comparing different metrics in k-NN models,
Manhattan distance outperforms Chebyshev distance and
the most commonly used Euclidean distance, as shown in
Figure 8. This is because Manhattan distance handles data
with binary attributes well and our data contains a lot of
binary numbers as we use one hot encoding.

Figure 8. Validation accuracy of k-NN models with different

metics.

3.2.2 Weighted k-NN

In regular k-NN, we simply use the majority vote from

the nearest neighbors to predict the test data. Since the
weights of different neighbors are uniform, this is also
called uniform weighted k-NN.

As we increase the number of neighbors ​k​, the
generalization increases while the model becomes less
stable. When we use a large ​k ​(i.e. greater than 8), the
accuracy of the uniform k-NN stops increasing. As shown
in Figure 9. This is because the local structure can no
longer be represented well with large ​k​ values.

Figure 9. Accuracy of uniform k-NN and distance-weighted

k-NN.

Distance-weighted k-NN has better performance than

uniform k-NN where each neighbor is weighted by the
distance. Closer neighbors represent local features better
so they have larger weights. Here we use the inverse of the
distance as the weights. The accuracy keeps going up as ​k
increases, even in a large value (i.e. ​k​ = 18)

3.2.3 Bagging and pasting

We test ensemble learning on k-NN models with
bagging methods.

Bagging methods form a class of k-NN models which
build several instances of k-NN estimators on random
subsets of the original training set. The bagging methods
we use here are bagging and pasting. They differ from
each other by the way they draw random subsets of
samples. Bagging draws subset with replacement while
pasting draws without replacement.

The results of single k-NN and k-NN with bagging
methods are shown in Table 3.

 Single k-NN Bagging Pasting

k=1 0.662 0.673 0.669

k=5 0.673 0.678 0.678

k=10 0.681 0.680 0.680

Table 3.Validation accuracy of single k-NN and k-NN with

bagging methods.

4

For a k-NN model with small ​k (i.e. k = 1), bagging and

pasting increase the model performance by reducing
variance between estimators. Bagging performs better than
pasting.

For a k-NN model with larger ​k​, bagging and pasting
don’t increase accuracy compared to a single k-NN model.
Difference between bagging and pasting is trivial. This is
because bagging and pasting benefit unstable learners that
are usually sensitive to modified datasets. However, our
k-NN models with proper ​k values are stable and effective
therefore don’t benefit from bagging methods.

We achieve the highest accuracy of 0.716 on the k-NN
model. In the fine-tuned model, we use Manhattan
distance and samples are weighted by distance.

3.3. Support Vector Machine

Support Vectors Classifier tries to find the best
hyperplane to separate the different classes by maximizing
the distance between sample points and the hyperplane.
We implement different kernels and tune the
hyperparameters to find the best model for severity
prediction.

Since SVM models are not scale-invariant, normalizing
the input data before applying the model can significantly
speed up the training process.

3.3.1 Kernel Chosen and Number of Samples

The kernel functions that might perform well on our
dataset are: linear, polynomial (poly), and radial basis
function (rbf).

Linear kernel function can be expressed as:
,< x x′ >

With default parameters, its training accuracy vs. the
number of training points is shown in Figure 10. The best
accuracy is around 0.69.

Figure 10. Accuracy of linear SVM vs. the number of training

samples.

Polynomial kernel function can be expressed as:
(γ , +)< x x′ > r d

Its training accuracy vs. the number of training points
using default parameters is shown in Figure 11. The best
accuracy is around 0.72.

Figure 11. Accuracy of poly SVM vs. the number of training

samples.

Radial basis function kernel can be expressed as:
xp(− ||x ||)e γ − x′ 2

Its training accuracy vs. the number of training points is
shown in Figure 12. The best accuracy is also around 0.72.

Figure 12. Accuracy of rbf SVM vs. the number of training

samples.

Obviously, poly and rbf kernels perform better than the

linear model. This is because they use non-linear
hyperplanes to classify the sample points. SVM model
training is super slow with a large number of data points.
From Figure 10,11 and 12, training 8000 samples provides
the best tradeoff between accuracy and speed. Therefore,
all the following training processes use 8000 training
samples.

3.3.2 Hyperparameter Tuning

C is a hyperparameter that controls the strength of
regularization. It controls the tradeoff between smooth
decision boundary and training accuracy. Figure 13 and 14

5

show the validation set accuracy vs. different C values for
poly model and rbf model, respectively. For both models,
the best accuracy occurs when C is around 15.

Figure 13. Accuracy of poly SVM vs. C.

Figure 14. Accuracy of rbf SVM vs. C.

Hyperparameter γ is used for non-linear hyperplane

tuning. The higher the γ value is, the harder the model tries
to exactly fit the training dataset. Figure 15 and 16 show
the validation set accuracy vs. different γ values for poly
model and rbf model, respectively. For the poly model, the
best accuracy occurs when γ is around 0.02, and the best γ
for the rbf model is around 0.04.

Figure 15. Accuracy of poly SVM vs. γ.

Figure 16. Accuracy of rbf SVM vs. γ.

For the poly model, we also tuned the parameter

“degree”, which refers to the degree of the polynomial
kernel function. The degree is swept from 0 to 6 and the
result is shown in Figure 17. The best degree for our
application is 2.

Figure 17. Accuracy of poly SVM vs. degree.

Therefore, with the well-tuned SVM model, we

achieved 0.741 test accuracy, when using the poly model
with degree = 2, C = 15, and γ = 0.02.

4. Comparison and Discussion

 Decision
Tree

K-NN SVM

Accuracy 0.927 0.716 0.741

Table 4. Accuracy of different models

In our work, we obtain the best accuracy by using
decision trees with minimal cost-complexity pruning as
shown in Table 4. In this section, we analyze and compare
different classifiers in our project and explain why
decision trees can obtain the best performance on our data.

6

Predicting accident severity is a nonlinear multiclass
problem. Decision trees are nonlinear algorithms that are
designed in a structure intrinsically suited for multiclass
situations, while basic support vector machines are mainly
designed for linear binary classification problems. The
k-NN model is suitable for nonlinear multiclass problems
with low feature dimensions. In our data, feature
dimensionality is high. Besides, the k-NN algorithm is a
clustering algorithm based on neighborhoods. So, we have
to use a distance metric and all the features must be
numeric. In our data, we have several hot features. These
features are treated as numeric values and can negatively
influence the final performance.

5. Conclusions and Future Work
In this paper, we used 500,000 data points to predict the

severity of car accidents in California. We drop
meaningless features from 49 features in raw data. We
simplify text data into key words and use one-hot
encoding to convert them into numerical data. Finally, we
obtain data with 42 features.

Decision tree, k-NN and SVM models are used for
prediction. With decision trees, we tune minimum leaf size
and split threshold to decide when the tree stops dividing.
To balance the influence of different classes, we use
balanced weights. We also prune unnecessary branches of
a complete tree to avoid overfitting. For k-NN, we
compare models with different distance metrics.
Distance-weighted k-NN has better performance than
uniform k-NN. In a distance-weighted knn, the closer the
neighbour, the more important it is. Thus, we can preserve
generalization when we increase the number of neighbors.
For SVM, We tried linear, poly, and rbf kernels. Poly and
rbf have higher accuracy than the linear model. We tuned
the penalty term of the error and for poly and rbf γ
kernels to get better trade-off between underfitting and
overfitting.

Among all the models, the decision tree with minimal
cost-complexity pruning achieves the highest accuracy at
0.927.

Reference
[1] World Health Organization. 2015. ​Global status

report on road safety 2015​. World Health
Organization.

[2] US Accidents (3.0 million records) A Countrywide
Traffic Accident Dataset (2016 - 2019)
https://www.kaggle.com/sobhanmoosavi/us-accidents

[3] Pedregosa et al., ​Scikit-learn: Machine Learning in
Python​, JMLR 12, pp.2825-2830, 2011.

[4] Altman, Naomi S. 1992. "An introduction to kernel

and nearest-neighbor nonparametric regression"​. The
American Statistician. 46 (3): 175–185.

7

https://www.kaggle.com/sobhanmoosavi/us-accidents

