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Motivation

● Vibrational energy harvesting become viable alternatives because of the 

limitations of batteries, along with the reduction of power consumption and 

size. [1]

● Working frequency range of conventional resonance devices can be 

increased using nonlinearities obtained through geometrical design. [2] 

● As devices continue to shrink, it is also necessary to miniaturize energy 

harvesters while maximizing power. 
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Background 

Figure 1. Schematic drawing of a MEMS 
electrostatic energy harvester with nonlinear 
springs. [4]

● Wideband MEMS energy harvesters 
○ Well-suited to extract power from a wide spectrum of 

vibrations.

○ Greater output power and wide bandwidth due to inclined 

springs. [3]

● Applications: 
○ Bridge or structural constructions wireless monitoring 

sensors.

○ Wearable and implantable sensors.

○ Automotive tire pressure monitoring systems (TPMSs). 
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Device Description

● Electrostatic vibrational energy 
harvester.

● Angled spring to achieve 
nonlinearities.

● Fabrication:  SOI DRIE process 
with three photolithography 
masks. 
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State-of-the-art Vibration Energy Harvesting Devices

Ref Year Specific Power (W/kg)

4 2010 1.22e-2

5 2011 1.27e-3

6 2013 3.10e-5

7 2013 9.35e-3

Our Scaling Target >1e-1

Hypothesis: Scaling the vibration energy harvester down will increase power 

output per mass of the device.

5



Modeling the Harvester with Equivalent Circuit

From this we can find the power transferred across both loads as
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Model with Experimental Results

Figure 2: Peak output voltages as a function of frequency (a) Literature experimental results (b) Generated model.

(a) (b)

7



Model with Experimental Results

Figure 3: Output power as a function of load resistance for sinusoidal vibration, with acceleration of 0.14g and a bias voltage 
of 28.4 V (a) Literature experimental results (b) Generated model.

(a) (b)
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Two Types of Scaling

● Scaling Finger Gaps
○ Only affects η

○ Equal effect by decreasing the gaps 

as increasing the number of fingers

○ Does not affect quality factor or 

resonant frequency significantly

○ Affects load resistance

● Scaling Entire Structure
○ Affects damping, stiffness, mass and gaps

○ Reduces allowed bias voltage  (changes η)

○ Shifts resonant frequency but should not 

change quality factor

○ Affects load resistance
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Final Structure Specifications
Description Original Gap Scaled (S=7.5) Fully Scaled (S=1000)

Mass 35.25 mg 35.25 mg 35.25 pg

Thickness 300 µm 300 µm 300 nm

Beam Length ~1400 µm ~1400 µm 1.4 µm

Beam Width 20 µm 20 µm 20 nm

Transducer Gap 15 µm 2 µm 15 nm

Finger width 15 µm 2 µm 15 nm

Initial Capacitive Overlap ~120 µm ~120 µm 120 nm

Number of fingers 128 960 128

Bias Voltage 28.4 V 10.1 V 0.1 V 10



Model Assumptions for Scaling
● Damping Coefficient

○ Damping from Couette flow dominates

○ Area scales but undercut of release etch does not

○ Viscous damping from the gaps around the fingers is negligible 

● The spring coefficient is near linear in the region of operation
○ k scales with S

● All length dimensions of capacitance scale with S
○ C scales with S
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Scaling Finger Gaps
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Trend of Scaling Finger Gaps
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Interpretation

Physical interpretation:

● The resistive load dominates the output impedance

● The increased coupling decreases optimal load and 
counteracts increase in current

As η increases,
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Scaling the Entire Structure 1000x
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Trend of Scaling the Entire Structure
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Final Structure Specifications
Description Original Gap Scaled (S=7.5) Fully Scaled (S=1000)

Mass 35.25 mg 35.25 mg 35.25 pg

Thickness 300 µm 300 µm 300 nm

Beam Length ~1400 µm ~1400 µm 1.4 µm

Beam Width 20 µm 20 µm 20 nm

Transducer Gap 15 µm 2 µm 15 nm

Finger width 15 µm 2 µm 15 nm

Initial Capacitive Overlap ~120 µm ~120 µm 120 nm

Number of fingers 128 960 128

Bias Voltage 28.4 V 10.1 V 0.1 V 17



Conclusion
Original Gap Scaled (S=7.5) Fully Scaled (S=1000)

Power output (per mass) 0.16 W/kg 0.74 W/kg 7.37 kW/kg

Resonant Frequency 590 Hz 590 Hz 590 kHz

Bandwidth (FWHM) 1.28 Hz 2.28 Hz 2284.6 Hz

Peak specific power 
output (per mass) 0.0122 W/kg 0.033 W/kg 32.78 W/kg

Load Resistance 17.5 MΩ 0.19 MΩ 76.4 kΩ

Scaling down the device:
● Increases output power per mass
● Raises resonance frequency

○ Problem for spectrums with 
low frequency

● Decreases needed bias voltage
● Drives low load resistance
● Increases bandwidth
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